

What's our Annual Lost Expoure and probability of occurrence of these threats reaching and exploiting our asset?

CHIEF RISK OFFICER

Please demonstrate Return on Investment!

CHIEF FINANCE OFFICER

Ability to demonstrate request for resources in line with business risk tolerance.

CHIEF SECURITY OFFICER

Focus resources on use cases for TTP early in attack chain.

HEAD OF SOC

What governance and efficacy are the controls?

HEAD OF AUDIT

Are controls proportinate to risk?

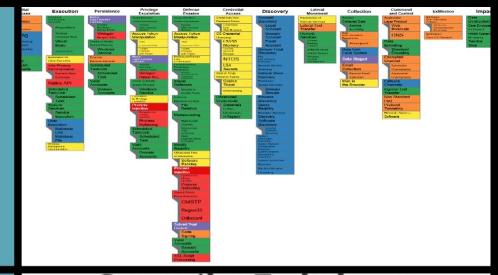
DATA PROTECTION OFFICER

ARE WE SAFE?

Is it safe?

How good are they to inflict pain?

PYRAMID OF PAIN


Threat capability

Help prioritise efforts

'TEACH'

Travis Smith

(GitHub project no longer maintained)

Separating Techniques Not really an exploit

Techniques Only

Example – Graphical User Interface
 Easy to exploit (my mom could probably do it)

Easy to exploit (my mom could probably do it)
 No need for POC malware, scripts, or other tools

Anyone • Example – Accessibility Features

Additional Steps
Required

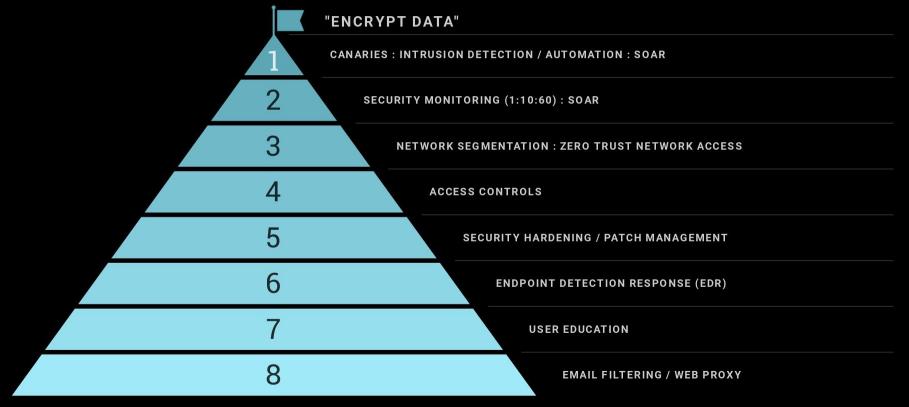
Need some sort of tooling such as Metasploit or POC scripts
Could be more advanced than those found in green
Example – Exploitation for *

Example - Web Shell

Requires additional infrastructure to be able to exploit

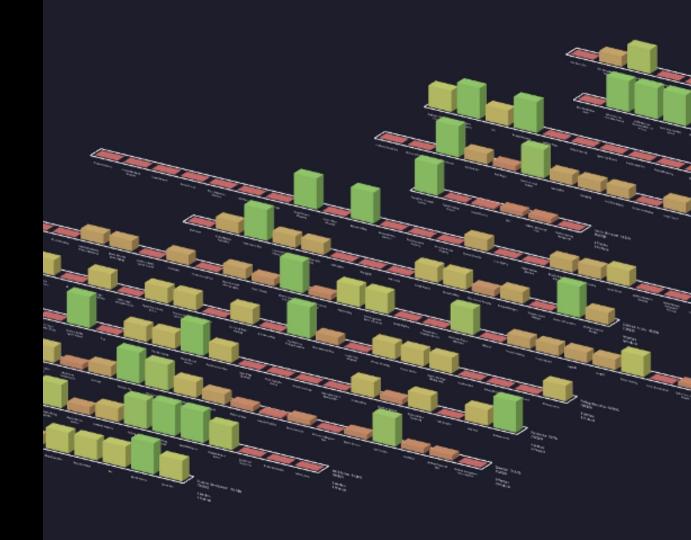
Cost Prohibitive • Some are quite easy, some can be more advanced.

Requires the use of other techniques to be truly viable


Hard
 In-Depth Understanding of the OS

What's your resistance...

Resistance layers


Example Ransomware defence in depth layers

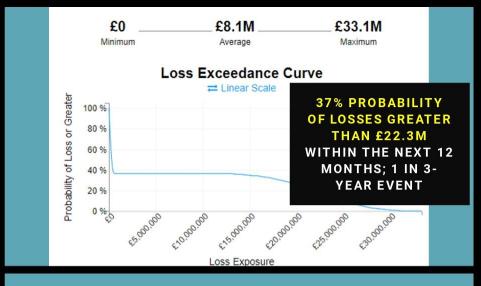
Extract from ESProfiler

FOCUSED THREAT GROUPS

Behaviour against Mitre Att&ck TTP's

Resistance to attack group

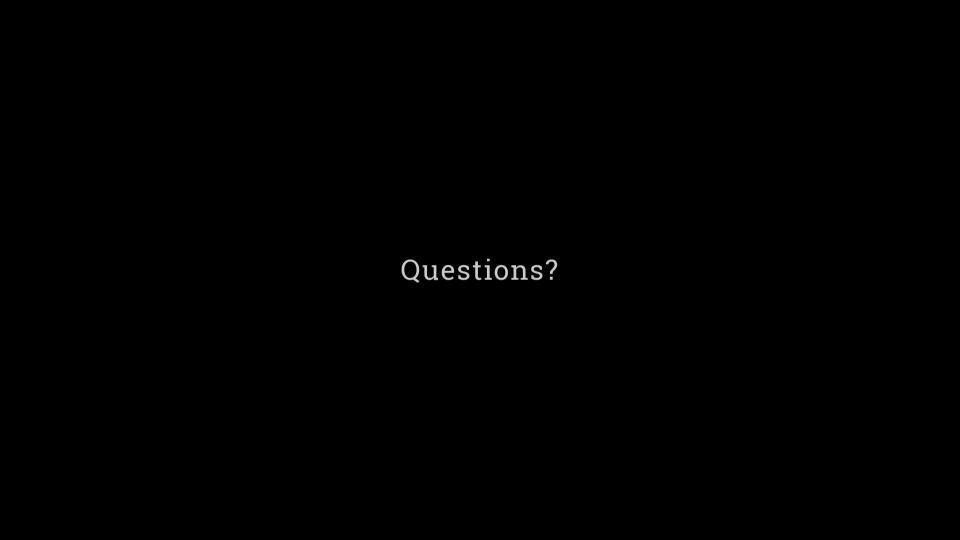
Layer	Range	Min	Most Likely	Max
Canaries : Intrusion Detection / Automation : SOAR	0 - 5%	0	1	2
Security Monitoring (1:10:60) : SOAR	0 -10%	0	5	7
Network segmentation : Zero Trust Network Access	0 - 5%	0	0	1
Access controls	0 - 5%	0	1	2
Security hardening / patch management	0 - 30%	15	18	21
Endpoint detection response (EDR)	0 - 20%	14	16	18
User education	0 - 10%	5	6	7
Email filtering	0 - 15%	7	9	11
	100%	41%	56%	69%


Plug values into model.....

Factor Analysis of Information Risk (FAIR) Quantitative Model

Risk scenario

RANSOMWARE

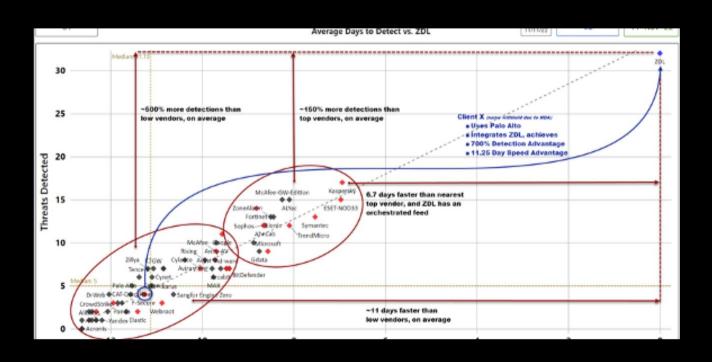

Business impact

RANSOMWARE ATTACK BY CYBER CRIMINALS
CAN LEAD TO LONG TERM UNAVAILABILITY OF IT
INFRASTRUCTURE.

THERE IS A 38% PROBABILITY OF LOSSES
GREATER THAN £7.6M WITHIN THE NEXT 12
MONTHS DUE TO RANSOMWARE; 1 IN 2.6-YEAR
EVENT.

Risk summary

TYPICALLY, RANSOMWARE ATTACKS ARE
DELIVERED VIA PHISHING EMAILS WHICH
UNCHECKED CAN PROLIFERATE ACROSS IT
NETWORKS AND ENCRYPT ASSETS AND DENY TO
CORE BUSINESS APPLICATIONS. HISTORICALLY
RANSOM DEMAND IS MUCH LOWER COST THAN
LOSS OF DOWNTIME (WEEKS - MONTHS).



Appendix

Venture if you dare!

Threat Intelligence feeds - All are not equal!

What improves Resistance?

KISS

Resistance influence	Weight	Simple	Example of control efficacy"Most Likely"	
People training on control	10%	CMMI	Level 3 - Defined = 6%	
Metrics (KRI/KPI) from control	5%	CMMI	Level 1 - Initial: Processes are ad hoc = 0%	
RED team testing of control	10%	CMMI	Level 5 - Optimizing = 8%	
Enriched with threat intelligence	8%	Optional	Level 3 - Defined = 4.8%	
Frequency of Configuration review with vendor	7%	CMMI	Level 4 - Quantitatively Managed = 5.6%	
Maturity of CIS Critical Security Controls (CIS Controls) mapped against control area	10%	CMMI/NIST CSF	Level 4 - Quantitatively Managed = 8%	
Control efficacy against TTP/Threat	50%	ESProfiler	35%	
	100%		67.40%	